Hamiltonicity of Minimum Distance Graphs of 1-Perfect Codes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonicity of Minimum Distance Graphs of 1-Perfect Codes

A 1-perfect code Cn q is called Hamiltonian if its minimum distance graph G(Cn q ) contains a Hamiltonian cycle. In this paper, for all admissible lengths n ≥ 13, we construct Hamiltonian nonlinear ternary 1-perfect codes, and for all admissible lengths n ≥ 21, we construct Hamiltonian nonlinear quaternary 1-perfect codes. The existence of Hamiltonian nonlinear q-ary 1-perfect codes of length N...

متن کامل

SQS-graphs of extended 1-perfect codes

An extended 1-perfect code C folds over its kernel via the Steiner quadruple systems associated with its codewords. The resulting folding, proposed as a graph invariant for C, distinguishes among the 361 nonlinear codes C of kernel dimension κ with 9 ≥ κ ≥ 5 obtained via Solov’eva-Phelps doubling construction. Each of the 361 resulting graphs has most of its nonloop edges expressible in terms o...

متن کامل

Graphs Associated with Codes of Covering Radius 1 and Minimum Distance 2

The search for codes of covering radius 1 led Österg̊ard, Quistorff and Wassermann to the OQW method of associating a unique graph to each code [9]. We present results on the structure and existence of OQW-associated graphs. These are used to find an upper bound on the size of a ball of radius 1 around a code of length 3 and minimum distance 2. OQW-associated graphs and non-extendable partial La...

متن کامل

Spectral radius and Hamiltonicity of graphs with large minimum degree

We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G. Let G be a graph of order n and λ (G) be the spectral radius of its adjacency matrix. One of the main results of the paper is the following theorem: Let k 2, n k3 + k + 4, and let G be a graph of order n, with minimum degree δ (G) k. If λ (G) n k 1, then G has a Hamiltonian cycle, unless G = K1 _ (Kn k...

متن کامل

Perfect codes in Doob graphs

We study 1-perfect codes in Doob graphsD(m,n). We show that such codes that are linear over GR(4) exist if and only if n = (4γ+δ−1)/3 andm = (4γ+2δ−4γ+δ)/6 for some integers γ ≥ 0 and δ > 0. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2158